Mark Scheme (Results)

Summer 2018

Pearson Edexcel International GCSE
In Mathematics B (4MB0) Paper 01R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 4MB0_01R_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

Question	Working Answer	Mark	Notes
1	Time difference between London and Delhi is + 4hours 30 mins (oe)	2	M1
	OR For Delhi, 1015 am to 212 pm is 3 hours 57 min		A1
	Time in London is 545 am or 0545 (cao)		
	NB: 545 scores A0		
	SC: 545 with no working gains M1		
2	One of 180 and 324 factored as	2	M1
	$180=2^{2} \times 3^{2} \times 5$ $324=2^{2} \times 3^{4}$$\quad$ OR$180=36 \times 5$ $324=36 \times 9$OR one correct Factor Tree		
	HCF $=36$		A1
3	One term correct	2	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x+5 x^{-6} \quad \text { OR } \quad 6 x+\frac{5}{x^{6}}$		A1
4	-9, 3	2	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$

| Question | Working
 Answer | Mark | Notes |
| :--- | :--- | :---: | :---: | :---: |
| $\mathbf{5}$ | 1.23×10^{2} (OR 123), $\quad \frac{9 \pi}{3 \pi}\left(\right.$ OR $\frac{9}{3}$ or 3), $\quad(\sqrt{3} \times \sqrt{27})(\mathrm{OR}+9$ or $\sqrt{81})$ | 2 | B2 $(-1$ eeoo $)$ |
| NB: Deduct marks starting with the second ePEN mark box
 If one error then B1 B0, if two errors B0 B0 | | | |

Question	Working Answer	Mark	Notes
6	The point X is st $C X / / A B / / E D$ $\angle B C D=\angle B C X+\angle D C X=25+80$	2	M1
	(OR Join A to E st angles $B A E$ and $D E A 90^{\circ}$ and since sum of angles of pentagon $=540^{\circ}$, $540=90+90+155+100+\angle B C D$ $540=90+90+155+100+\angle B C D$		(M1)
	OR Straight line $X C Y$ is perpendicular to $A B$ and $E D$. So $\begin{aligned} & \angle X C B=65^{\circ} \text { and } \angle Y C D=10^{\circ} \\ & \angle B C D=180-(65+10) \end{aligned}$ OR Draw line $C P$ st $C P / / A B / / D E$ st		((M1))
	$\angle B C D=360-155-100 \quad$ (angles at a point) OR Angles at a point $360-(100+155)$ OR $\triangle B C D$ method: In $A B D E: 360=180-(\angle A B D+\angle B D E)$. In $\triangle B C D$: AND in $\triangle B C D: \quad \angle B C D=180-\{(155-\angle A B D)+(100-\angle B D E)\}$		$\begin{aligned} & ((\mathrm{M} 1)) \\ & ((\mathrm{M} 1)) \\ & ((\mathrm{M} 1)) \end{aligned}$
	$\angle B C D=105^{\circ}$ NB: Award for angles on diagram		A1

Question	Working Answer	Mark	Notes
7	Correct determinant statement $=4 \times 6-(8 \times(-2)) \quad(=40)($ No errors)	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\frac{1}{40}\left(\begin{array}{rr}6 & 2 \\ -8 & 4\end{array}\right), \quad \frac{1}{20}\left(\begin{array}{rr}3 & 1 \\ -4 & 2\end{array}\right), \quad\left(\begin{array}{cc}3 / 20 & 1 / 20 \\ -1 / 5 & 1 / 10\end{array}\right)$ (oe), $\quad\left(\begin{array}{cc}0.15 & 0.05 \\ -0.2 & 0.1\end{array}\right)$		
8	$\begin{align*} & \tan 30=\frac{(500-350)}{A C} \quad \text { OR } \quad \tan 60=\frac{A C}{(500-350)} \tag{oe}\\ & \text { OR }\left(B D=\frac{150}{\sin 30}=300\right) \quad A C=\sqrt{300^{2}-150^{2}} \quad \text { M1 } \end{align*}$	2	M1 A1
	$A C=260$ (m)		
9	$16 a^{5} \quad$ OR $16 b^{-2}$ (oe) OR $n a^{5} b^{-2}$ (oe, $n \neq 16$) (ie obtain 2 out of the 3 resulting factors of the answer)	2	B1 B1
	$\frac{16 a^{5}}{b^{2}} \text { OR } 16 a^{5} b^{-2}$ NB: Note order of marks in ePEN		
10	$\left(1+2^{5}\right) \times 2^{n}$ (ie odd number \times even number)	2	M1 A1
	$33 \times 2^{35} \quad$ OR $\quad m=33$ or $1+2^{5}$ and $n=35$		
	NB: No working seen scores M0 A0		

Question	Working Answer	Mark	Notes
11	Length of other side of the base is 6 m	3	B1M1
	Volume of the pyramid $=\frac{1}{3} \times(" 6 " \times 8) \times 15$ NB: Accept 8 or 28 as misread for 6 if there is no indication of other side eg on diagram (M1). But score M0 if any other number is used in place of 6 .		
	$240 \mathrm{~m}^{3}$		A1
12	$(1-2 x) y=1+x+2(1-2 x) \quad$ (oe, Removing denominator, , allow 1 sign or arithmetic slip)	3	M1M1 (DEP)A1
	$2 x y-3 x=y-3 \quad$ (oe, correctly collecting terms in x for their expression)		
	$x=\frac{y-3}{2 y-3}, \quad \frac{3-y}{3-2 y}$ (oe)		

Question	Working Answer	Mark		Notes
16 (a)	$(A \cup B)^{\prime}=\{3,6,7,10,14\}$	1	B1	
(b)	Any one of $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}="\{3,6,7,10,14\}$ " (ie ft their (a))	2	B1	
	OR $\quad B^{\prime} \cap C=C=\{6,10,13,14\} \quad(\mathbf{N B}(A \cup B) \cap C=\varnothing)$			
	OR $\quad A^{\prime}=\{2,3,4,6,7,8,10,12,14\}$ and $B^{\prime}=\{1,3,5,6,7,9,10,11,13,14\}$		B1	
	$\left(A^{\prime} \cap B^{\prime} \cap C\right)=\{6,10,14\} \quad \text { (cao) }$ NB: (1) Condone missing brackets (2) B1 for (a) cannot be earned in (b) retrospectively			
17 (a)	20	1	B1	
(b)	$\frac{5+8+10+" 20 "+25+40}{6}$	2	M1	
	18 NB: ft their answer to 3 sf		A1ft	

Question	Working Answer	Mark		Notes
18	$\left((2 x+1)\left(3 x^{2}+c x+d\right)=6 x^{3}+(2 c+3) x^{2}+(2 d+c) x+d\right)$	3		
	$d=6$		B1	
	$2 c+3=-19 \quad$ OR $\quad c+2 d=1$		M1	
	$c=-11$		A1	
	(OR Algebraic long division: $3 x^{2}-11 x \ldots$		(M1)	
	$c=-11$		(A1)	
	$d=6$		(B1)	
	NB: Seeing just $3 x^{2}-11 x+6$ without identification of the values of c and d also scores M1 A1)			
	OR Synthetic Division:			
	Table: $-\frac{1}{2} \left\lvert\, \begin{array}{lllll}6 & -19 & 1 & 6\end{array}\right.$		(M1)	
	$\begin{array}{lll}-3 & 11 & -6\end{array}$			
	ie $6 x^{3}-19 x^{2}+x+6=\left(x+\frac{1}{2}\right)\left(6 x^{2}-22 x+12\right)=(2 x+1)\left(\left(3 x^{2}-11 x+6\right)\right.$			
	$\begin{aligned} & \therefore c=-11 \\ & \therefore d=6 \end{aligned}$		(A1) (B1)	

Question	Working Answer	Mark	Notes
19	$10=k 2^{3} \quad \text { OR } \quad \frac{10}{2^{3}}=\frac{2160}{t^{3}}$	4	M1 A1 M1(DEP) A1
	$k=1.25, \quad \frac{10}{2^{3}}, \quad \frac{10}{8}, \frac{5}{4} \quad$ OR $\quad t^{3}=\frac{2160}{\left(\frac{10}{2^{3}}\right)} \quad$ (oe)		
	NB: or any of the above seen or implied in working		
	$t=\sqrt[3]{\frac{2160}{1.255^{\prime \prime}}}, \quad$ (oe)		
	$t=12$		
20	$-2<x \quad$ OR $\quad x \leq 2$	4	M1 M1(DEP) (M1)
	$-2<x \quad$ AND $\quad x \leq 2$		
	(OR Trial and Error Method Substitute $x=-2$ and $x=-1$ in $4 x+5$ OR Substitute $x=2$ and $x=3$ in $4 x+5$		
	Both $-1,0,1,2$		$(\mathrm{M} 1(\mathrm{DEP})))$ A2(-1eeoo)
	NB: In ePEN, deduct errors starting with the $2^{\text {nd }} \mathrm{A}$ box, so one error B1 B0, two errors B0B0		

intersect at point R
A 's course drawn correctly so that it bisects $\angle B A C$ and passes through the (A1) points A and R

NB: (1) A 's course has to be drawn such that there is at most only at most a hint of white between the overlay and the drawn course close to $B C$ and within triangle $A B C$.
(2) Ship A 's course must be drawn within triangle $A B C$ and from A to $B C$.
(3) The A mark in (c) is dependent on both (a)'s B mark and on (b)'s A mark having been attained.

Question	Working Answer	Mark	Notes
23 (a) (b)	Car A's speed is decreasing as it moves further away from O. Straight line going through $(0,5)$ and going through, eg, $(4,45)$ and intersects A 's curve twice. NB: $2^{\text {nd }} B$ mark is dependent on the first B mark	1 2	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$

(s)

Question	Working Answer	Mark	Notes
(a)	Penalise nc ONCE only $\left(C D=7.2, \angle C B D=29.5^{\circ}, \angle B A C=71.79^{\circ}\right)$ $4^{2}=2^{2}+5^{2}-2 \times 2 \times 5 \times \cos \angle A C B$ $\angle A C B=\cos ^{-1}\left(\frac{2^{2}+5^{2}-4^{2}}{2 \times 2 \times 5}\right)$ $\angle A C B=(49.4584) \rightarrow 49.5$	3	M1
(b)	$B D$ $\frac{B D}{\sin \left(" \angle B C D^{\prime \prime}\right)}=\frac{5}{\sin 20^{\circ}}$ $B D=\frac{5 \times \sin \left(" \angle B C D^{\prime \prime}\right)}{\sin 20^{\circ}}$ $B D=\mathbf{1 1 . 1}$	M1(DEP)	

Question	Working Answer	Mark	Notes
$27 \quad \text { (a)(i) }$ (ii)	A scale factor $\frac{1}{2}, 2$ OR $\frac{675}{54}, \frac{25}{2}$ (using area representing frequency so 675 small squares for 54 shops) - might implied in working OR 3 columns (27 squares) $=54$ shops or 1 column $(9$ squares $)=18$ shops OR Freq Density scale marked as $0,18,2$ $\begin{equation*} 0 \rightarrow 1: \quad 8=\frac{\text { freq }}{1} \times " \frac{1}{2} " \tag{oe} \end{equation*}$ NB:The B1 and M1 could be collected in (ii) if incorrect in (i) $\text { freq }=16$ $4 \rightarrow 6: \quad 7=\frac{\text { freq }}{2} \times " \frac{1}{2} " \quad(\mathrm{oe})^{*}$ NB: The M1 can be earned here if not already earned in (i) above. $\text { freq }=\mathbf{2 8}$ $*\left(\text { OR " } \frac{2}{25} " \times(5 \times 40) \text { for } 0 \rightarrow 1 \quad \text { or } \quad " \frac{2}{25} " \times(10 \times 35) \text { for } 4 \rightarrow 6\right. \text { for }$ the (M1) using small squares OR 1×16 for $0 \rightarrow 1$ or 2×14 for $4 \rightarrow 6$ using columns)	4	B1 M1 A1 A1 (M1)

Question	Working Answer	Mark	Notes
(b)	Two correct mid-points used in two "correct" products: Fully "correct" expression using their number of shops $\mathbf{3 . 8 , 3 . 8 0}(\mathrm{km})$	3	M1

